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Force between charged particles with ion condensation
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~Received 25 June 1999!

We have numerically calculated the interaction forces between two highly charged spherical particles em-
bedded in a cloud of small ions with or without charge redistribution on the particle surfaces. Ion condensation
near the charged particles leads to reduced electrostatic interaction between the particles, and we find that the
effective two-particle interaction is significantly smaller than the values expected from considering only effec-
tive single-particle potentials.

PACS number~s!: 52.25.Zb, 61.25.Hq
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I. INTRODUCTION

Many interesting physical systems contain large char
particles, sometimes referred to as macroions, that are
bedded in a cloud of small ions. The electrostatic forces
tween the charged particles and the small ions may be do
nate in many cases, hence dictate the physical propertie
the system. One good example is a system of charged
loidal particles in solutions with or without dissolved sa
@1#. Another interesting system is a dusty plasma, in wh
large charged dust particles interact with the electrons
ions of the background plasma. Dusty plasmas have l
been observed in space@2#, and more recently in laboratorie
@3#. Further examples in physical, chemical, and biologi
systems are numerous@4#.

The simplest mean field approach to describe this sys
is the Poisson-Boltzmann equation~PBE! @5#. A linear ap-
proximation of the PBE leads to an electrostatic poten
around a macroion of the Debye-Hu¨ckel ~DH! form, with a
characteristic screening length. This effective description
been very successful for weakly coupled particles. For hig
charged particles, the current understanding is that some
will condense near the particle surface, the net part
charge will be reduced, and the remaining ions and elec
static potential can be treated again within the linear Poiss
Boltzmann equation~LPBE!. This is well understood in the
case of a line charge, where Manning@6# first systematically
demonstrated this condensation by showing that withou
the free energy computed from the partition function w
diverge near a highly charged line charge~Manning conden-
sation!.

In Manning condensation, it is assumed that for a l
charge just enough ions will condensate onto it to rem
this free energy divergence. On the other hand, one co
start from the Poisson-Boltzmann equation and system
cally obtain condensation. For a single macroion in one
two dimensions~a charged plane and cylinder, respectivel!,
there exist analytical solutions@7# for the PBE, and indeed
condensation is obtained. In three dimension~charged
spheres!, the PBE can only be solved numerically.

For a mixture of large charged particles and small io
one of the particularly interesting physical properties is
effective interaction between ‘‘dressed’’ particles, under
simplification that small ions are treated adiabatica
PRE 611063-651X/2000/61~1!/824~7!/$15.00
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Within the assumption of a ‘‘mean spherical’’ approximatio
closure, this interaction has been calculated@8#, and shown
to be of the Debye-Hu¨ckel form with renormalized effective
charges. This is consistent with the picture of Manning co
densation. Charged colloidal particles in a crystal lattice h
also been studied by solving the PBE numerically with t
spherical Wigner-Seitz cell approximation@9#. It has been
found that the the electrostatic potential is of the DH fo
near cell boundaries, with effective renormalized charg
An ‘‘ ab initio’’ method that combined equilibrium calcula
tions for the ions with molecular dynamics simulations f
macroions was also used to compute macroion proper
with a pseudo-potential technique to avoid the discontinu
behavior of the ionic potential at macroion surfaces@10#.

In this paper we present the results of a direct calculat
of the interaction between two spherical particles from
Poisson-Boltzmann equation. The results are obtained
both uniform fixed surface charges and moving surfa
charges yielding a constant electrostatic potential. The P
is numerically solved and the dependence of the free ene
on particle separation is computed. We are particularly in
ested in studying how ion condensation affects the inter
tion in the highly charged regime. This problem has be
studied before@11#, but the charge considered was mu
lower than that of the present work. They numerically solv
the PBE by using a bispherical coordinate system for t
spheres. The results thus obtained were then used to be
mark the accuracy of various approximating methods, s
as the Deryaguin approximation, the superposition appro
mation, and the Hogg-Healy-Fuerstenau approximati
However, their results did not clarify the relationship b
tween the two-particle interaction and their charges. M
important is the charge renormalization by ion condensa
near surface in the limit of high charge, as discussed in
rest of this paper.

At high particle charges, nonlinearity and ion conden
tion lead to a sharp increase of the electrostatic poten
near the particle surface, thus requiring a very fine grid in
numerical solutions. We thus adopt the usual spherical co
dinate system with the origin at the center of one particle,
with nonuniform radial grids. Details of the numeric
method are described in Sec. III.

This paper is organized as follows: in Sec. II we brie
review the density functional formulation which we use
824 ©2000 The American Physical Society
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PRE 61 825FORCE BETWEEN CHARGED PARTICLES WITH ION . . .
obtain the Poisson-Boltzmann equation and expression o
free energy. Sec. III describes our numerical method. S
tions of the PBE for a single spherical particle are presen
in Sec. IV, which will serve as a basis of comparison w
two-particle interaction. The results of two-particle intera
tion are presented in Sec. V.

II. DENSITY FUNCTIONAL FORMULATION

Consider two negatively charged particles embedded
large system consisting of positive~referred as ions hereaf
ter! and negative~referred as electrons! charges at an averag
number densityn0 initially. We choose to write the formu
lation in an open system which is in contact with heat a
particle reservoirs of constant temperature and density.
mean field free-energy density functional is thus written

F5TiE ni ln nidr1TeE ne ln nedr1
1

2 E fenidr

2
1

2 E fenedr1
1

2 E f f dr1m iTiE nidr

1meTeE nedr .

The first two terms are the entropic contributions of ions a
electrons. Ions and electrons are assumed carrying ch
6e, and their temperatures areTi andTe , respectively. Al-
though, e.g., in colloidal systems where the small ions
moving in a solutionTi is always equal toTe , in a rf-
powered weakly ionized dusty plasma they could be diff
ent by a factor of 100@12#. ni(r ) andne(r ) are the ion and
electron number density, andf (r ) represents the charge di
tribution of the two charged particles. The middle thr
terms are the total electrostatic energy withf(r ) the electro-
static potential.m i and me are the chemical potentials, an
the last two terms are necessary because there are pa
exchanges between the system and the reservoirs.

The equilibrium configuration is determined bydF/dni
5dF/dne50, with boundary conditions

ni~r→`!5ne~r→`!→n0 , f~r→`!→0.

One then recovers the usual Boltzmann distributions,

ni5n0e2ef/Ti, ne5n0eef/Te, ~1!

with m i5me52 ln n021. Inserting these charge distribution
into the Poisson equation yields the PBE,

¹2f524p~eni2ene1 f !

524p@en0~e2ef/Ti2eef/Te!1 f #. ~2!

We also obtain the free energy as

F5
1

2 E f f dr2
1

2
eE ~ni2ne!fdr 2E ~Tini1Tene!dr .

Note that in this open system, the last integral will not be
constant. The LPBE follows whenf in Eq. ~2! is expanded
to the lowest order,
he
u-
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¹2f l54pe2n0S 1

Te
1

1

Ti
Df l24p f .

The corresponding free energy becomes

FL5 1
2 E f l f dr2n0V~Ti1Te!. ~3!

From the last two equations it is easy to see that, in the lin
theory, two charged point particles interact through
screened-Coulomb interaction.

These equations can be written in dimensionless form
defining

1

T
[

1

Te
1

1

Ti
, h[

1

Te
Y S 1

Te
1

1

Ti
D , l22[

4pn0e2

T
,

and usingl as the length scale,e/T as the electrostatic po
tential unit, andn0 as the number density unit.l is the De-
bye length which defines the screening length. The to
charge of the particle denoted asQ will then be measured in
the unit ofen0l3. The particle radius will be denoted bys in
the unit ofl. The resulting PBE and free energy become

¹2f5ehf2e2(12h)f2 f ,

F5
1

2 E f f dr2
1

2 E ~ni2ne!fdr

2
1

~12h!
E nidr2

1

h E nedr .

For the linear approximation,

¹2f l5f l2 f ,

FL5
1

2 E f l f dr2V~Ti1Te!/l
3T.

Here we have used the same symbols for the dimension
variables, since only the dimensionless equations will
used from now on.

III. NUMERICAL METHODS

We first solve the PBE for a single spherical charged p
ticle. The resulting one-dimensional radial equation is in
grated by the standard fourth-order Runge-Kutta method.
choose to integrate starting far away from the origin~the
location of the particle! and inward to the particle surface
Integrating from a large distance away~say, 20 Debye
lengths! we can safely start from zero potential and mat
the derivative of potential at the surface to particle charg
which are assumed to uniformly distribute on the surface
a single particle.

In order to solve the PBE, and compute the free ene
for a system with two charged spheres, a suitable grid
required. For two identical spheres, symmetry around
axis connecting both centers permits calculations to be d
in two dimensions. Symmetry with respect to the bisect
plane between the two spheres further reduces the nece
computational domain by half. We thus adopt a spheri
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826 PRE 61PEILONG CHEN AND C.-Y. D. LU
grid with the origin at the center of one of the spheres,
depicted in Fig. 1~for the sake of clarity, fewer grid node
are drawn here than those used in actual computations!.

In this paper we consider two types of surface cha
behaviors:~1! fixed uniform surface charges such that t
potential boundary condition at the surface is implemen
as a jump in normal derivative between the two sides of
surface and~2! surface charge redistribution allowed to giv
a constant surface electrostatic potential. The fixed cha
case is, for example, the usual condition for charge collo
particles where charges mostly come from the ionic m
ecules embedded on the surface. On the other hand, a
stant surface electrostatic potential is more appropriate
dusty plasmas where charges of dusts come mostly from
cumulation of free electrons.

Since the coordinate origin is at the center of a partic
the particle boundary~the thick line in Fig. 1! lies at r
5const. As illustrated in Fig. 1, grid points in the radi
direction are not uniform in order to have a denser grid n
the particle surface. In this way, with a manageable num
of grid points, we can accurately represent the potentia
well as its large derivative near the particle surface, and
the same time cover a large enough computational dom
such that the zero potential boundary condition can be u
at the domain boundary. Calculations have been made u
a range of number of grid points to make sure that the res
are independent of the discretizations.

This ability to easily adjust the radial grid is the ma
motivation to choose the spherical coordinate system w
the origin at the particle center. This, however, comes a
price in that a cutting plane, i.e., the midplane between p

FIG. 1. Grid system used in calculation of two-particle potent
For clarity, grids shown here are fewer than those in the comp
tions.
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ticles, must be drawn at the upper boundary, resulting in
irregular grid points thus complicating the computer codin
At this cutting plane, zero normal derivative boundary co
dition ~with respect to the plane, not to coordinate lines! are
implemented to represent the intended situation of two id
tical particles with a separation twice that of the distan
between the origin and this plane. In other words, differ
interparticle separations are obtained by cutting the plan
different locations.

The method of successive-over-relaxation is used to so
the PBE in this grid. In addition, instead of solving the PB
directly, we actually solve the equation for the quantitydf
[f2f l , with f l the symmetrical potential for a single pa
ticle, which is obtained as mentioned above by integrat
the radial PBE. Withf l subtracted out,df has much smaller
values and derivatives thanf, especially at high charges, an
hence it is easier to obtain accurate results.

IV. SINGLE-PARTICLE POTENTIAL

In this section we present results for the one-particle
tential,f l , from the integration of the radial PBE to have
systematic account of the potential, and to establish a b
of comparison for our results on two charged particle int
actions. Similar results also appeared in@13#. In Fig. 2 the
symmetrical potentials outside a charged sphere with
radius are shown, with values of the particle chargeQ51,
20, 100, 1000, 4000, and 8000. The temperature parameth
equals to 0.5, i.e.,Ti5Te . Different values of particle radius
andh yielded similar results. AtQ51 and 20 we see perfec
straight lines in the plot of log(rfl) vs r, i.e., the expected
DH potential:Q exp(2r)/r. At Q5100, the potential outside
the immediate vicinity of particle surface is still of the sam
form. Near the particle boundary (r 51), however, the po-
tential starts to slightly deviate from the DH form. A sha
increase nearr 51 is apparent forQ51000, and becomes

.
a-

FIG. 2. Single-particle potential from the integration of on
dimensional PBE. From the lowest line up,Q51, 20, 100, 1000,
4000, 8000. Note that the last two lines are almost indistingu
able.
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PRE 61 827FORCE BETWEEN CHARGED PARTICLES WITH ION . . .
more pronounced asQ is further increased.
The sharp increase of potential near the boundary refl

a large concentration of ions, corresponding to condensa
As a consequence of this pileup, there is a reduction
eventual saturation of the far field potential, as clearly de
onstrated in the figure. Theref l(Q54000) and f l(Q
58000) are indistinguishable, except very close to the p
ticle surface. Since the potential outside the immedi
neighborhood of the particle remains of the screened C
lomb form, we can thus define an effective chargeQf* for
any value ofQ, such that the potential outside is given b
Qf* exp(2r)/r. Forh50.5 ands51 ~the particle radius!, the
effective chargeQf* is plotted in Fig. 3 as a function of th
original chargeQ. Qf* 5Q for low Q. However, asQ in-
creases over 100,Qf* saturates to a upper limit of about 26

The saturated value, denoted asQf* (max), can only de-
pend on the size of the particle. This dependence is plotte
the upper curve in Fig. 4. From this curve and the size of
particle, we can immediately determine the maximum el
trostatic strength from the particle. For example, in the c
of a dusty plasma@14#, one set of possible parameters isl
'0.1 mm and the particle size'5 mm, leading to s
50.05. This value ofs gives to a value ofQf* (max) of
about 14, although estimates of actual total charges on
particle could be much larger@15#.

It is reasonable thatQf* (max) increases withs. Scaling
ass2 at larges is expected as it should be controlled by t
charged particle surface area. This behavior is indeed see
Fig. 4.

V. TWO-PARTICLE INTERACTION

We next discuss the solutions for two charged partic
Effective charges obtained from the solutions of the rad
PBE earlier seem to imply that the interaction will scale
Qf*

2e22d/2d, with 2d the particle separation. However, w
show here that, from two-particle solutions of this findin
Qf* overestimates the effective interaction charge by ab
40%. The possible implication of this finding for systems

FIG. 3. Effective charge defined from single-particle poten
for s51.
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three- and more particle interactions is also discussed.
The idea behind the potential effective chargeQf* is that

the small condensation region will become inert. Howev
we find that, based on results here, the condensation re
still actively interacts with the other particle. The usefulne
of Qf* depends on the existence of high charge concen
tions in the condensation region. However, these very la
charge concentrations and potentials in this region can
duce a large effect on the other particle due to the expon
tial nonlinearity.

The PBE for two spherical particles is solved with th
method detailed in Sec. III. The resulting free energy
shown in Fig. 5 withh50.5 ands50.1, as a function of
interparticle separation for the case of uniform surfa
charges. At smallQ, the linear theory is expected to be co

l FIG. 4. Maximum effective charges as functions of partic
sizes. The upper curve is from the one-particle potential and
lower curve from the two-particle free energy.

FIG. 5. Two-particle free energy as functions of separation
s50.1 under the uniform surface charge condition. The dash lin
the point particle analytical result.
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828 PRE 61PEILONG CHEN AND C.-Y. D. LU
rect and it is indeed seen that the line corresponding toQ
51 is very close to the dotted line~which is the linear free
energy for two point particles of the sameQ). This linear
behavior is also found by noting that the free energy sca
asQ2 at smallQ at fixedd ~not shown here!.

At Q510, the nonlinearity starts to affect the free ener
so that the ratioF(Q510)/F(Q51)'90, with a few per-
cent decrease towards lowerd. WhenQ is further increased
to 100, first we see that the interaction deviates from
screened-Coulomb form at small separations. Also the f
energy saturates, as apparent in Fig. 5 that the lines co
sponding toQ5100 andQ51000 are almost indistinguish
able.

In the case of constant surface potential in which the s
face charges are able to redistribute at different interpar
separations, the free energy should be smaller. Indeed
calculation does find it to be smaller, however, the differen
is insignificant and would be indistinguishable if drawn
Fig. 5. The reduction is about 1% at 2d50.5 in the linear
regime (Q&10) and becomes even smaller whenQ or the
particle separation 2d increase~see the discussion of Fig.
below!.

One may think that this small reduction is due to t
relatively small particle size ats50.1, and hence the limited
range of charge motion. We indeed obtain larger free ene
reduction for larger particle sizes. In Fig. 6 we plot the
duction percentageof the free energy from the uniform
charge to constant potential conditions. Fors51 and Q
51 we do get a larger change of about 13% at 2d52.5 ~i.e.,
a value of 0.5 of the particle surface to surface distance! and
the value drops to about 2% at a large separation of 2d54.
At small Q these values remain approximately independ
of Q; a result must hold if the linear Poisson-Boltzma
equation is a good description. On the other hand, when
ion condensation appears at largeQ, this difference in free
energy quickly drops and approaches zero. This can
been seen from the earlier drop for the smaller particle s
s50.1. The reason for this behavior can be seen from Fi

FIG. 6. Reduction percentage of the free energy from the u
form surface charge condition to the constant potential conditio
s
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where we plot the charge redistributiond f as functions ofQ
for both s50.1 ands51. @Since theu dependence of the
redistributions are very similar for differentQ and 2d, only
representative amplitudes ofd f (u) are plotted here.# d f
scales linearly withQ at smallQ, but at largeQ even when
the average density increasesd f decreases and decays
zero. This indicates that at largeQ with a condensation re
gion near particle surfaces, only a very small redistribut
of charges would restore the constant potential. Hence
high Q with ion condensation which is the main interest
this paper, both boundary conditions would yield very sim
lar results.

The saturation of free energy at highQ for both boundary
conditions, however, cannot be solely explained by the s

i-
.

FIG. 7. Amplitude of the charge redistribution as functions ofQ.
Plotted in the inlet is a typicalu dependence of the charge redist
bution ~against a positive mean density!.

FIG. 8. Maximum effective charge from the two-particle fre
energy as a function of separation atb50.5 ands50.1.
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PRE 61 829FORCE BETWEEN CHARGED PARTICLES WITH ION . . .
rated far-field single-particle potential discussed in Sec.
~We will only show the results for uniform charges fro
now on.! To see this, we first define another effective cha
from the free energy

QF* ~Q,d![ lim
Q0→0

F F~Q,d!

F~Q0 ,d!G
1/2

Q0 ,

and its maximum limiting valueQF* (max)5QF* (Q→`).
QF* (max) is plotted in Fig. 8 forb50.5 ands50.1. The
arrow near the top of the graph marks the value ofQf* (max).
At large separations,QF* (max) approach a constant valu
with a significant reduction fromQf* (max) @Qf* (max) is
about 40% higher#. As the particles move closer, there is
further decrease ofQF* (max).

We believe that the reduction ofQF* (max) from
Qf* (max) is due to the nonlinear interaction inside the co
densation region. This can be understood from Fig. 9
which QF* is plotted againstQf* for a range ofQ (s51). If
the condensated ions were inactive, we should obtai
straight line. Instead, the solid curve in Fig. 9 starts to de
ate from the straight line at aboutQf* '90(Q'100), the
value at which the single-particle potential starts to have c
densation in Fig. 2.

FIG. 9. QF* (max,d52) as a function ofQf* (max) for s51.
n-

.

s.
.

e

-
n

a
i-

-

The maximum valuesQF* (max), at a particle surface to
surface distance of twice the Debye length, are plotted a
function of the particle size in the lower curve of Fig. 4. Th
reduction fromQf* (max) to QF* (max) is fairly uniform for
all particle sizes, from small particles at 0.05l to large ones
at 8l.

The decrease ofQF* (max) at small separations also im
plies that there will be significant many-body corrections
the pair interaction at small separations. This is import
since in realistic physical situations usually many partic
are spatially confined. These many-body corrections w
have the effect of further reducing the effective charges. B
ter quantitative predictions can only be made if a method
compute the interacting free energy for the multiple-parti
systems can be developed.

VI. CONCLUSIONS

Solutions of the Poisson-Boltzmann equation for
charged particle have previously been shown to have a
gion concentration near the particle surface. The far-field
lutions retain the Debye-Hu¨ckel form with a renormalized
~effective! charge strength. This strength reaches a satura
value at high charges.

From numerical solutions of the PBE for two charg
spheres with both uniform charge and constant poten
boundary conditions, we have shown that the effect
charge obtained from a single-particle far-field solution ca
not be used to predict the two-particle interaction streng
The results that we have obtained indicate that at h
charges two-particle interactions do not retain the Deb
Hückel form at small separations. The interacting stren
measured in terms of the effective charge inferred from
free energy depends on particle separation, and is sig
cantly reduced. The difference is about 40% for all parti
sizes. We believe that this reduction is due to the the hig
charged condensation regions near each particle, altho
small, are still actively interacting with the potential from th
other particle. We also argue that many-body correctio
should further reduce the effective charge.
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