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Force between charged particles with ion condensation
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We have numerically calculated the interaction forces between two highly charged spherical particles em-
bedded in a cloud of small ions with or without charge redistribution on the particle surfaces. lon condensation
near the charged particles leads to reduced electrostatic interaction between the particles, and we find that the
effective two-particle interaction is significantly smaller than the values expected from considering only effec-
tive single-particle potentials.

PACS numbds): 52.25.Zb, 61.25.Hq

I. INTRODUCTION Within the assumption of a “mean spherical” approximation
closure, this interaction has been calculat@fl and shown
Many interesting physical systems contain large chargedo be of the Debye-Hekel form with renormalized effective
particles, sometimes referred to as macroions, that are encharges. This is consistent with the picture of Manning con-
bedded in a cloud of small ions. The electrostatic forces bedensation. Charged colloidal particles in a crystal lattice have
tween the charged particles and the small ions may be doméalso been studied by solving the PBE numerically with the
nate in many cases, hence dictate the physical properties spherical Wigner-Seitz cell approximatigf]. It has been
the system. One good example is a system of charged cdleund that the the electrostatic potential is of the DH form
loidal particles in solutions with or without dissolved salts near cell boundaries, with effective renormalized charges.
[1]. Another interesting system is a dusty plasma, in whichAn “ ab initio” method that combined equilibrium calcula-
large charged dust particles interact with the electrons antons for the ions with molecular dynamics simulations for
ions of the background plasma. Dusty plasmas have longacroions was also used to compute macroion properties,
been observed in spaf2|, and more recently in laboratories with a pseudo-potential technique to avoid the discontinuous
[3]. Further examples in physical, chemical, and biologicalbehavior of the ionic potential at macroion surfaf@].
systems are numero(i4]. In this paper we present the results of a direct calculation
The simplest mean field approach to describe this systerf the interaction between two spherical particles from the
is the Poisson-Boltzmann equati6RBE) [5]. A linear ap-  Poisson-Boltzmann equation. The results are obtained for
proximation of the PBE leads to an electrostatic potentiaboth uniform fixed surface charges and moving surface
around a macroion of the Debye-tkel (DH) form, with a  charges yielding a constant electrostatic potential. The PBE
characteristic screening length. This effective description has numerically solved and the dependence of the free energy
been very successful for weakly coupled particles. For highlyon particle separation is computed. We are particularly inter-
charged particles, the current understanding is that some iorested in studying how ion condensation affects the interac-
will condense near the particle surface, the net particlgion in the highly charged regime. This problem has been
charge will be reduced, and the remaining ions and electrostudied beforg[11], but the charge considered was much
static potential can be treated again within the linear Poissorlewer than that of the present work. They numerically solved
Boltzmann equatiofLPBE). This is well understood in the the PBE by using a bispherical coordinate system for two
case of a line charge, where Mannifg] first systematically spheres. The results thus obtained were then used to bench-
demonstrated this condensation by showing that without itmark the accuracy of various approximating methods, such
the free energy computed from the partition function will as the Deryaguin approximation, the superposition approxi-
diverge near a highly charged line chai@anning conden- mation, and the Hogg-Healy-Fuerstenau approximation.
sation. However, their results did not clarify the relationship be-
In Manning condensation, it is assumed that for a linetween the two-particle interaction and their charges. More
charge just enough ions will condensate onto it to removeémportant is the charge renormalization by ion condensation
this free energy divergence. On the other hand, one couldear surface in the limit of high charge, as discussed in the
start from the Poisson-Boltzmann equation and systematiest of this paper.
cally obtain condensation. For a single macroion in one and At high particle charges, nonlinearity and ion condensa-
two dimensionga charged plane and cylinder, respectiyely tion lead to a sharp increase of the electrostatic potentials
there exist analytical solutior]¥] for the PBE, and indeed near the particle surface, thus requiring a very fine grid in the
condensation is obtained. In three dimensiécharged numerical solutions. We thus adopt the usual spherical coor-
spherey the PBE can only be solved numerically. dinate system with the origin at the center of one particle, but
For a mixture of large charged particles and small ionswith nonuniform radial grids. Details of the numerical
one of the particularly interesting physical properties is themethod are described in Sec. Ill.
effective interaction between “dressed” particles, under the This paper is organized as follows: in Sec. Il we briefly
simplification that small ions are treated adiabatically.review the density functional formulation which we use to
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obtain the Poisson-Boltzmann equation and expression of the
free energy. Sec. Ill describes our numerical method. Solu- V2 =4me’ng
tions of the PBE for a single spherical particle are presented

in Sec. IV, which will serve as a basis of Compal’ison W|thThe Corresponding free energy becomes
two-particle interaction. The results of two-particle interac-
tion are presented in Sec. V.
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Fu=t | oifdr—ngv(Ti+Ty). @3
Il. DENSITY FUNCTIONAL FORMULATION o . _
_ ) ) ~ From the last two equations it is easy to see that, in the linear
Consider two negatively charged particles embedded in gheory, two charged point particles interact through a
large system consisting of positiveeferred as ions hereaf- screened-Coulomb interaction.
ter) and negativéreferred as electropsharges at an average  These equations can be written in dimensionless form by
number densityn, initially. We choose to write the formu- defining
lation in an open system which is in contact with heat and
particle reservoirs of constant temperature and density. Thel 1 1 1 / ( 1 N 1
n=- - T
Te Te Ti

B _, Amnge?
mean field free-energy density functional is thus written as T~ -|-_';L T =

L] )\ - T L]

1 and using\ as the length scal@/T as the electrostatic po-
F_Tif i In nidr+Tef Ne Inndr+ 5 f gendr tential unit, andn, as the number density unit. is the De-

1 1 bye length which defines the screening length. The total
_= endr+ = J' fdr+ 'T'f n.dr chargg of the particle den_oted @gmll then be measureq in

2 f dendrs | ¢ piti) o the unit ofeny\ . The particle radius will be denoted layin
the unit ofA. The resulting PBE and free energy become

+,U~eTeJ nedr. V2p=ent—g (1-Mé_¢

The first two terms are the entropic contributions of ions and 1 1

electrons. lons and electrons are assumed carrying charge F=§ f ¢fdf—§ f (Nj—ng) pdr
+e, and their temperatures afe and T, respectively. Al-

though, e.g., in colloidal systems where the small ions are 1 1

moving in a solutionT; is always equal toT,, in a rf- ) f nidf—; f nedr.

powered weakly ionized dusty plasma they could be differ-
ent by a factor of 10@12]. ni(r) and ne(r) are the ion and For the linear approximation,
electron number density, arfdr) represents the charge dis-
tribution of the two charged particles. The middle three V2= —f,
terms are the total electrostatic energy wiifr) the electro-
static potential.u; and u. are the chemical potentials, and
the last two terms are necessary because there are particle
exchanges between the system and the reservoirs.

The equilibrium configuration is determined &F/dn; Here we have used the same symbols for the dimensionless
= 6F/6n,=0, with boundary conditions variables, since only the dimensionless equations will be

used from now on.

1
Fl=5 f G fdr—=V(T;+T)/IN3T.

Ni(r—°)=ne(r—o)—ng, ¢(r—=)—0.

One then recovers the usual Boltzmann distributions, lll. NUMERICAL METHODS

oolT We first solve the PBE for a single spherical charged par-
Ne=MNo€™"" "¢, (D ticle. The resulting one-dimensional radial equation is inte-
grated by the standard fourth-order Runge-Kutta method. We
choose to integrate starting far away from the orig¢ime
location of the particlpand inward to the particle surface.

ni=nge T,

with u; = ue=—Inng—1. Inserting these charge distributions
into the Poisson equation yields the PBE,

2, _ Integrating from a large distance awdgay, 20 Debye
Vig=—dm(en—en+f) lengthg we can safely start from zero potential and match
= —477[eno(e_e¢/Ti—ee¢/Te)+f]_ 2) the derivative of potential at the surface to particle charges,
which are assumed to uniformly distribute on the surface for
We also obtain the free energy as a single particle.

In order to solve the PBE, and compute the free energy
for a system with two charged spheres, a suitable grid is
required. For two identical spheres, symmetry around the
axis connecting both centers permits calculations to be done
Note that in this open system, the last integral will not be ain two dimensions. Symmetry with respect to the bisection
constant. The LPBE follows whed in Eg. (2) is expanded plane between the two spheres further reduces the necessary
to the lowest order, computational domain by half. We thus adopt a spherical

Fzg f q&fdr—%eJ (ni—ne)(bdr—J (Tin;+Teang)dr.
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FIG. 2. Single-particle potential from the integration of one-
dimensional PBE. From the lowest line up~=1, 20, 100, 1000,
4000, 8000. Note that the last two lines are almost indistinguish-
able.

ticles, must be drawn at the upper boundary, resulting in an
_ _ _ _ _irregular grid points thus complicating the computer coding.

FIG. 1. Grid system used in calculation of two-particle potentlaI.At this cutting plane, zero normal derivative boundary con-
Eor clarity, grids shown here are fewer than those in the CompUtaaition (with respect to the plane, not to coordinate linage
tions. implemented to represent the intended situation of two iden-
tical particles with a separation twice that of the distance
depicted in Fig. 1(for the sake of clarity, fewer grid nodes _%etween_ the origin ;_;md this plang. In other vyords, different

' . ' . interparticle separations are obtained by cutting the plane at

are drawn here than those used in actual computations different locations

In this paper we consider two types of surface charge . L
L . ) The method of successive-over-relaxation is used to solve
behaviors:(1) fixed uniform surface charges such that the

potential boundary condition at the surface is implementeéhe PBE in this grid. In addition, instead of solving the PBE

as a jump in normal derivative between the two sides of thed'reCtly’ we actually solve the equation for the quantey

surface and?2) surface charge redistribution allowed to give tzf’_ ‘%Z Vr\]”t.h d"bih.e s;(;mmetncatll potgntlgl for ‘E smgtle pa{.r-
a constant surface electrostatic potential. The fixed charg cl€, Which 1S obtained as mentioned above by integrating
case is, for example, the usual condition for charge colloidaf® radial PBE'. W'W' subtracted O.Ut5¢ ha:'s much smaller
particles where charges mostly come from the ionic moI-VaIueS _ar_ld derl_vatlves th"?‘?"‘ especially at high charges, and
ecules embedded on the surface. On the other hand, a Colagnce itis easier to obtain accurate results.

stant surface electrostatic potential is more appropriate in

dusty plgsmas where charges of dusts come mostly from ac- IV. SINGLE-PARTICLE POTENTIAL

cumulation of free electrons.

Since the coordinate origin is at the center of a particle, In this section we present results for the one-particle po-
the particle boundanythe thick line in Fig. } lies atr tential, ¢, from the integration of the radial PBE to have a
=const. As illustrated in Fig. 1, grid points in the radial systematic account of the potential, and to establish a basis
direction are not uniform in order to have a denser grid neapf comparison for our results on two charged particle inter-
the particle surface. In this way, with a manageable numbe#ctions. Similar results also appeared 13]. In Fig. 2 the
of grid points, we can accurately represent the potential asymmetrical potentials outside a charged sphere with unit
well as its large derivative near the particle surface, and atadius are shown, with values of the particle cha@e 1,
the same time cover a large enough computational domaif0, 100, 1000, 4000, and 8000. The temperature parameter
such that the zero potential boundary condition can be useelquals to 0.5, i.eT;=T,. Different values of particle radius
at the domain boundary. Calculations have been made usirand » yielded similar results. AQ=1 and 20 we see perfect
a range of number of grid points to make sure that the resultstraight lines in the plot of logg,) vsr, i.e., the expected
are independent of the discretizations. DH potential:Q exp(—r)/r. At Q=100, the potential outside

This ability to easily adjust the radial grid is the main the immediate vicinity of particle surface is still of the same
motivation to choose the spherical coordinate system witliorm. Near the particle boundary €1), however, the po-
the origin at the particle center. This, however, comes at &ential starts to slightly deviate from the DH form. A sharp

price in that a cutting plane, i.e., the midplane between parincrease near=1 is apparent folQ=1000, and becomes

grid with the origin at the center of one of the spheres, a
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FIG. 3. Effective charge defined from single-particle potential FIG. 4. Maximum effective charges as functions of particle
for o=1. sizes. The upper curve is from the one-particle potential and the
lower curve from the two-particle free energy.
more pronounced a® is further increased.
The sharp increase of potential near the boundary reflectfiree- and more particle interactions is also discussed.
a large concentration of ions, corresponding to condensation. The idea behind the potential effective cha@¥ is that
As a consequence of this pileup, there is a reduction anthe small condensation region will become inert. However,
eventual saturation of the far field potential, as clearly demwe find that, based on results here, the condensation region
onstrated in the figure. There),(Q=4000) and ¢,(Q  still actively interacts with the other particle. The usefulness
=8000) are indistinguishable, except very close to the paref Qj, depends on the existence of high charge concentra-
ticle surface. Since the potential outside the immediatgions in the condensation region. However, these very large
neighborhood of the particle remains of the screened Coweharge concentrations and potentials in this region can in-
lomb form, we can thus define an effective cha@} for  duce a large effect on the other particle due to the exponen-
any value ofQ, such that the potential outside is given by tial nonlinearity.
QJ exp(—r)/r. For n=0.5 ando =1 (the particle radius the The PBE for two spherical particles is solved with the
effective chargeQ?, is plotted in Fig. 3 as a function of the method detailed in Sec. Ill. The resulting free energy is
original chargeQ. Q%=Q for low Q. However, asQ in- shown in Fig. 5 with»=0.5 ando=0.1, as a function of
creases over 10@Q}, saturates to a upper limit of about 266. Qfg:pgg'cft ssrr?glga:rl\oenlir]:g;rt?hio(;asig e(>)<f eucr:'efgr[g bi}“ggrc_e
The saturated value, denoted @%(max), can only de- ges. ' y P
pend on the size of the particle. This dependence is plotted as
the upper curve in Fig. 4. From this curve and the size of the
particle, we can immediately determine the maximum elec-
trostatic strength from the particle. For example, in the case 4
of a dusty plasmdl14], one set of possible parameters\is
~0.1 mm and the particle size-5 um, leading too
=0.05. This value ofo gives to a value onﬁ;(max) of 10° b
about 14, although estimates of actual total charges on th
particle could be much largéi5]. 5
It is reasonable tha}(max) increases withr. Scaling g0 E
aso? at largeo is expected as it should be controlled by the "
charged particle surface area. This behavior is indeed seen i 102
Fig. 4.

10° .

Q=100,1000

V. TWO-PARTICLE INTERACTION 10° L

We next discuss the solutions for two charged particles.
Effective charges obtained from the solutions of the radial ,,+ .
PBE earlier seem to imply that the interaction will scale as 0 5 10
Q%%e~2%2d, with 2d the particle separation. However, we 2d
show here that, from two-particle solutions of this finding,  FiG. 5. Two-particle free energy as functions of separation for
Q7 overestimates the effective interaction charge by abou&=0.1 under the uniform surface charge condition. The dash line is
40%. The possible implication of this finding for systems ofthe point particle analytical result.
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FIG. 6. Reduction percentage of the free energy from the uni- FIG. 7. Amplitude of the charge redistribution as function€of
form surface charge condition to the constant potential condition. Plotted in the inlet is a typica# dependence of the charge redistri-
bution (against a positive mean dengity

rect and it is indeed seen that the line correspondin@® to

=1 is very close to the dotted lingvhich is the linear free Where we plot the charge redistributidi as functions ofQ
energy for two point particles of the san@). This linear for both =0.1 ando=1. [Since the# dependence of the
behavior is also found by noting that the free energy scalegedistributions are very similar for differe@ and 2, only
asQ? at smallQ at fixedd (not shown herg representative amplitudes aff (#) are plotted herg. 5f

At Q=10, the nonlinearity starts to affect the free energyscales linearly wittQ at smallQ, but at largeQ even when
so that the raticF (Q=10)/F(Q=1)~90, with a few per- the average density increasé$ decreases and decays to
cent decrease towards lowgrWhenQ is further increased Zero. This indicates that at large with a condensation re-
to 100, first we see that the interaction deviates from theédion near particle surfaces, only a very small redistribution
screened-Coulomb form at small separations. Also the freeof charges would restore the constant potential. Hence at
energy saturates, as apparent in Fig. 5 that the lines corr&igh Q with ion condensation which is the main interest in
sponding toQ=100 andQ=1000 are almost indistinguish- this paper, both boundary conditions would yield very simi-
able. lar results.

In the case of constant surface potential in which the sur- The saturation of free energy at highfor both boundary
face charges are able to redistribute at different interparicl€onditions, however, cannot be solely explained by the satu-
separations, the free energy should be smaller. Indeed our
calculation does find it to be smaller, however, the difference ' ' ' '
is insignificant and would be indistinguishable if drawn in
Fig. 5. The reduction is about 1% atd2 0.5 in the linear
regime @Q=10) and becomes even smaller wh@nor the
particle separation @ increase(see the discussion of Fig. 6
below).

One may think that this small reduction is due to the
relatively small particle size at=0.1, and hence the limited
range of charge motion. We indeed obtain larger free energy &
reduction for larger particle sizes. In Fig. 6 we plot the re- & 5 |
duction percentageof the free energy from the uniform
charge to constant potential conditions. Fer1 and Q
=1 we do get a larger change of about 13% dt=2.5 (i.e.,

a value of 0.5 of the particle surface to surface distaacel

the value drops to about 2% at a large separationdsf 2.

At small Q these values remain approximately independent
of Q; a result must hold if the linear Poisson-Boltzmann
equation is a good description. On the other hand, when th¢ 15 '
ion condensation appears at larQe this difference in free
energy quickly drops and approaches zero. This can also
been seen from the earlier drop for the smaller particle size FIG. 8. Maximum effective charge from the two-particle free
o=0.1. The reason for this behavior can be seen from Fig. @nergy as a function of separation@#0.5 ando=0.1.

Q}(max) - 5

25 .

2d
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200 ' ' ' - The maximum value®F (max), at a particle surface to
surface distance of twice the Debye length, are plotted as a
function of the particle size in the lower curve of Fig. 4. The
reduction fromQ;;(max) to Qf (max) is fairly uniform for

150 1 all particle sizes, from small particles at ON0¥o large ones

at 8\.

The decrease oRf(max) at small separations also im-
plies that there will be significant many-body corrections to
“ 400 |- i the pair interaction at small separations. This is important
since in realistic physical situations usually many particles
are spatially confined. These many-body corrections will
have the effect of further reducing the effective charges. Bet-
ter quantitative predictions can only be made if a method to
compute the interacting free energy for the multiple-particle
systems can be developed.

50 - B

VI. CONCLUSIONS

0 50 100 150 200 250
Q, Solutions of the Poisson-Boltzmann equation for a
charged particle have previously been shown to have a re-
FIG. 9. Qf (max,d=2) as a function o} (max) foro=1. gion concentration near the particle surface. The far-field so-
lutions retain the Debye-Hikel form with a renormalized
rated far-field single-particle potential discussed in Sec. IV (effective) charge strength. This strength reaches a saturation
(We will only show the results for uniform charges from vajue at high charges.
now on) To see this, we first define another effective charge From numerical solutions of the PBE for two charged

from the free energy spheres with both uniform charge and constant potential
2 boundary conditions, we have shown that the effective

Q*(Q,d)= lim [ F(Q,d) } charge obtained from a single-particle far-field solution can-

i Q0 F(Qq,d) 0 not be used to predict the two-particle interaction strength.

The results that we have obtained indicate that at high

and its maximum limiting valueQz (max)= Q% (Q—x). charges two-particle interactions do not retain the Debye-
Q% (max) is plotted in Fig. 8 fo3=0.5 ando=0.1. The Huckel form at small separations. The interacting strength

arrow near the top of the graph marks the vaIqu(max) measured in terms of the effective charge inferred from the
At large separationsQ¥ (max) approach a constant value free energy depends on particle separation, and is signifi-

ith anifi duction f N * : cantly reduced. The difference is about 40% for all particle
with a significant reduction r'oanS(max) [Qy(max) 'S sizes. We believe that this reduction is due to the the highly
about 40% highdr As the particles move closer, there is a

. charged condensation regions near each particle, although

further decrease d@r (max). _ small, are still actively interacting with the potential from the
We believe that the reduction oRQgf(max) from  other particle. We also argue that many-body corrections

Qj,)(max) is due to the nonlinear interaction inside the con-should further reduce the effective charge.

densation region. This can be understood from Fig. 9 in

which Q¢ is plotted againsQy, for a range oQ (o=1). If

the condensated ions were inactive, we should obtain a

straight line. Instead, the solid curve in Fig. 9 starts to devi- The authors would like to thank Dr. Jorge \dis for care-

ate from the straight line at abo@j,wQO(leoo), the ful reading of the manuscript. The support of National Sci-

value at which the single-particle potential starts to have conence Counsel, Taiwan, through Contract No. NSC 88-2112-
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